# ELECTRICAL SYSTEMS SIMULATION LAB MANUAL

IV B.TECH – I SEM (R16)

**Prepared BY**:

**G.KUMARASWAMY** 

ASSISTANT PROFESSOR

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING PRIYADARSINI INSTITUTE OF SCIENCE & TECHNOLOGY FOR WOMEN

## **LIST OF EXPERIMENTS**

Prerequisite: Electrical and Electronic circuits, Power System Analysis & Power Electronics

#### **Course Objectives:**

- To Simulate and analyse electrical and electronic systems.
- To evaluate the performance of transmission lines.
- To Analyze various Faults in power systems
- To Model, simulate and analyze the performance of DC Machines and Induction Motors.
- · To Analyze performance of feedback and load frequency control of the systems

Course Outcomes: After going through this lab the student will be able to

- · Design and Analyze electrical systems in time and frequency domain
- · Analyze various transmission lines and perform fault analysis
- · Model Load frequency control of Power Systems
- · Design various Power Electronic Converters and Drives.

#### Any ten of the following experiments are required to be conducted using suitable software

- 1. Design of first and second order circuits in time and frequency domain
- 2. Performance evaluation of medium and long transmission lines
- 3. Symmetrical component analysis
- 4. Transmission Line Fault Analysis
- 5. LG, LL and 3- $\Phi$  fault analysis of Transformer
- 6. Short Circuit Analysis of Power system models
- 7. Speed Control of DC Motor
- 8. Speed Control of Induction motor
- 9. Design and analysis of feedback control system
- 10. Transient analysis of open ended line and short circuited line
- 11. Load frequency control of single area and two area power system
- 12. Economic Dispatch of Thermal Units
- 13. Design of Single Phase and Three Phase Inverters
- 14. Design of Single Phase and Three Phase Full Converters

# **INDEX**

| Exp.<br>No | Name Experiment                                                        | Date Of<br>Exp. | Evalua<br>tion | Remarks |
|------------|------------------------------------------------------------------------|-----------------|----------------|---------|
| 1          | Design of first and second order circuits in time and frequency domain |                 |                |         |
| 2          | Performance evaluation of medium and long transmission lines           |                 |                |         |
| 3          | Symmetrical component analysis                                         |                 |                |         |
| 4          | Transmission Line Fault Analysis                                       |                 |                |         |
| 5          | Short Circuit Analysis of Power system models                          |                 |                |         |
| 6          | Speed Control of DC Motor                                              |                 |                |         |
| 7          | Speed Control of Induction motor                                       |                 |                |         |
| 8          | Design and analysis of feedback control system                         |                 |                |         |
| 9          | Load frequency control of single area and two area power system        |                 |                |         |
| 10         | Economic Dispatch of Thermal Units                                     |                 |                |         |
| 11         | Design of Single Phase and Three Phase Inverters                       |                 |                |         |
| 12         | Design of Single Phase and Three Phase Full Converters                 |                 |                |         |

# 1. DESIGN OF FIRST AND SECOND ORDER CIRCUITS IN TIME AND FREQUENCY DOMAIN

AIM: To find the I) Time response for step input

II) Frequency response for sinusoidal input.

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

#### **Procedure:**

- 1. Open the MATLAB software
- 2. Open the M-file
- 3. Type the program in editor window
- 4. Save in current directory as "filename"
- 5. Compile and run the program

I) Time response for step input: For the closed loop system defined by

| C(S) |   | 100                 |
|------|---|---------------------|
| D(C) | = | $S^{2} + 12S + 100$ |
| R(S) |   | $S^{2} + 12S + 100$ |

Plot the unit step response curve and time domain specifications.

#### **Program:**

```
clc;
clear all;
close all;
num=input('enter the numerator coefficients-----');
den=input('enter the denominator coefficients----');
system=tf(num, den);
system
step(system)
grid on;
wn=sqrt(den(1,3));
zeta = den(1,2) / (2*wn);
wd=wn*sqrt(1-zeta^2);
disp('Delay time in seconds is')
td = (1+0.7 * zeta) / wd
disp('Rise time in seconds is')
theta=atan(sqrt(1-zeta^2)/zeta);
tr=(pi-theta)/wd
disp('Peak time in seconds');
tp=pi/wd
```

disp('Peak overshoot is');

```
mp=exp(-zeta*pi/sqrt(1-zeta^2))*100
disp('settling time in seconds is');
ts=4/(zeta*wn)
```

## **Output:**

```
enter the numerator coefficients---->100
enter the denominator coefficients---->[1 12 100]
Transfer function:
100
_____
s^2 + 12 s + 100
Delay time in seconds is
td =
0.1775
Rise time in seconds is
tr =
0.2768
Peak time in seconds
tp =
0.3927
Peak overshoot is
mp =
9.4780
settling time in seconds is
ts =
0.6667
```

## Simulation waveform:



#### II) Frequency response for sinusoidal input:

#### **Program:**

```
%Frequency Response of second order system
clc;
clear all;
close all;
num=input('enter the numerator coefficients---->');
den=input('enter the denominator coefficients---->');
%Transfer function
sys=tf(num,den);
wn=sqrt(den(1, 3));
zeta = den(1,2) / (2*wn);
w=linspace(0,2);
u=w/wn;
len=length(u);
for k=1:len
m(k) = 1/(sqrt((1-u(k)^2) + (2*zeta*u(k))^2));
phi(k) = -atan((2*zeta*u(k))/(1-u(k)^2))*180/pi;
end
subplot(1,2,1)
plot(w,m)
xlabel('normalized frequency')
ylabel('magnitude')
subplot(1,2,2)
plot(w,phi)
xlabel('normalized frequency')
ylabel('phase')
disp('resonant peak is');
mr=1/(2*zeta*sqrt(1-zeta^2))
disp('resonant frequency in rad/sec is');
wr=wn*sqrt(1-2*zeta^2)
disp('bandwidth in rad/sec is');
wb=wn*sqrt(1-2*zeta^2+sqrt(2-4*zeta^2+4*zeta^4))
disp('phase margin in degrees is')
 pm=180+(atan(2*zeta/sqrt(-2*zeta^2+sqrt(4*zeta^4 +1))))*180/pi
```

#### **Output:**

```
enter the numerator coefficients---->100
enter the denominator coefficients---->[1 12 100]
resonant peak is
mr =
1.0417
resonant frequency in rad/sec is
wr =
5.2915
bandwidth in rad/sec is
wb =
11.4824
phase margin in degrees is
```

pm = 239.1873

#### Simulation waveform:



# 2. PERFORMANCE EVALUATION OF MEDIUM AND LONG TRANSMISSION LINES

**AIM:** Determination of ABCD parameters for medium and long transmission lines with a given condition and hence studies the performance of the line regulation and efficiency.

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

#### **Procedure:**

- 1. Open the MATLAB software
- 2. Open the M-file
- 3. Type the program in editor window
- 4. Save in current directory as "filename"
- 5. Compile and run the program

#### I) Medium transmission line:

**Statement:** A 3-phase 50Hz overhead transmission line delivers 10 MW at 0.8pf lagging at 66 kV. The resistance, inductive reactance and capacitive susceptance 10 ohm, 20 ohm and 4\*10^-4 siemen. Determine 1)Sending end current 2)Sending end voltage 3)Sending end power factor 4)ABCD parameter 5) Regulation 6) Transmission effeciency using nominal T method.

#### **Program:**

% medium transmission line clear: clc: R=input('resistance of the line in ohm='); X=input('reactance of the line in ohm='); B=input('susceptance of shunt line in mho='); VR3ph=input('voltage at receiving end in KV='); PR=input('real load at receiving end in MW='); QR=input('reactive load at receiving end in MVAR='); Z=R+j\*X;Y = 0 + j \* B;type=input('type(P-Pie/T-tmethod)=','s'); switch type case'P'  $ABCD = [1 + Z^*Y/2Z; Y^*(1 + Z^*Y/4) 1 + Z^*Y/2];$ case'T'

ABCD=[1+Z\*Y/2 Z\*(1+Z\*Y/4); Y 1+Z\*Y/2]; Otherwise Error('Invaid type choosen!!!') end VR=VR3ph/sqrt(3)+j\*0; SR=PR+j\*QR; IR=conj(SR)/(3\*conj(VR)); VSIS=ABCD\*[VR;IR]; VS=VSIS(1); VS3ph=sqrt(3)\*abs(VS); IS=VSIS(2); ISm=1000\*abs(IS); Pfs=cos(angle(VS)-angle(IS)); SS=3\*VS\*conj(IS); Reg=(VS3ph-VR3ph)/VR3ph\*100; Eff=PR/real(SS)\*100; fprintf('\n IS=%g A',ISm); fprintf('\n Pfs=%g',Pfs); fprintf('\n VS=%g L-L KV',VS3ph); fprintf('\n PS=%g MW',real(SS)); fprintf('\n QS=%g MVAR',imag(SS)); fprintf('\n percentage voltage regulation=%g',Reg); fprintf('\n percentage transmission line efficiency=%g',Eff); fprintf('\n ABCD parameters of transmission line\n'); disp(ABCD);

#### **Inputs:**

Resistance of the line in ohm=10 Reactance of the line in ohm=20 Voltage at receiving end in KV=66 Real load at receiving end in MW=10 Reactive load at receiving end in MVAR=7.5 Susceptance of shunt line in mho=4e-4 Type (P-Pie/T-tmethod)=T.

#### **Outputs:**

IS=100.533 A Pfs=0.853122 VS=69.5439 L-L KV PS=10.331 MW QS=6.31771 MVAR Percentage voltage regulation=5.36958 Percentage transmission line efficiency=96.7965 ABCD parameters of transmission line  $0.9960 + 0.0020i \quad 9.9600 + 19.9700i$   $0 + 0.0004i \quad 0.9960 + 0.0020i$ 

## II) Long transmission line:

**Statement:** Determine the efficiency and regulation of 3-phase, 50Hz, 120km long transmission line delivering 40MW at 132kV at 0.8 lagging pf with following details. Resistance/km/phase=0.2 ohm Inductive reactance/km/phase=1.3mH Capactive susceptance/km/phase=0.01 micro farad

### Program:

```
% long transmission line
clear;
clc:
R=input('resistance of the line in ohm=');
X=input('reactance of the line in ohm=');
B=input('susceptance of shunt line in mho=');
VR3ph=input('voltage at receiving end in KV=');
PR=input('real load at receiving end in MW=');
QR=input('reactive load at receiving end in MVAR=');
Z=R+j*X;
Y=0+j*B;
gamma=sqrt(Z*Y);
Zc=sqrt(Z/Y);
A=cosh(gamma);
B=Zc*sinh(gamma);
C=1/Zc*sinh(gamma);
D=A;
ABCD=[A B;C D];
VR=VR3ph/sqrt(3)+j*0;
SR=PR+j*QR;
IR=conj(SR)/(3*conj(VR));
VSIS=ABCD*[VR;IR];
VS=VSIS(1);
```

VS3ph=sqrt(3)\*abs(VS); IS=VSIS(2); ISm=1000\*abs(IS); Pfs=cos(angle(VS)-angle(IS)); SS=3\*VS\*conj(IS); Reg=(VS3ph-VR3ph)/VR3ph\*100; Eff=PR/real(SS)\*100; Val=(A\*D)-(B\*C); fprintf('\n IS=%g A',ISm); fprintf('\n Pfs=%g',Pfs); fprintf('\n VS=%g L-L KV',VS3ph); fprintf('\n PS=%g MW',real(SS)); fprintf('\n Qs=%g MVAR',imag(SS)); fprintf('\n percentage voltage regulation=%g',Reg); fprintf('\n Efficiency=%g',Eff); fprintf('\n A\*D-B\*C=%g',Val); fprintf('\n ABCd parameters of transmission line\n'); disp(ABCD);

### **Inputs:**

Resistance of the line in ohm=24 Reactance of the line in ohm=49.0088 Susceptance of shunt line in mho=3.76e-4 Voltage at receiving end in KV=132 Real load at receiving end in MW=40 Reactive load at receiving end in MVAR=30

## **Outputs:**

IS=200.922 A Pfs=0.830052 VS=149.46 L-L KV PS=43.1736 MW Qs=29.007 MVAR percentage voltage regulation=13.2272 Efficiency=92.6493 A\*D-B\*C=1 ABCD parameters of transmission line 0.9908 + 0.0045i 23.8528 +48.8944i -0.0000 + 0.0004i 0.9908 + 0.0045i **Result:** 

# 3. SYMMETRICAL COMPONENT ANALYSIS

AIM: To Analyze symmetrical fault.

Software Required: MATLAB software, R2009a

Windows XP operating system.

#### **Procedure:**

- 1. Open Matlab-->Simulink--> File ---> New---> Model
- 2. Open Simulink Library and browse the components
- 3. Connect the components as per circuit diagram
- 4. Set the desired voltage and required frequency
- **5.** Simulate the circuit using MATLAB
- **6.** Plot the waveforms

#### **Circuit Diagram:**



## **Output waveform:**



# 4. TRANSMISSION LINE FAULT ANALYSIS

**AIM:** To find the fault current in a given power system where there is

a) Balanced 3- $\phi$  fault. (LLL/LLLG).

- b) Single line to ground fault(LG).
- c) Line to line fault(LL).
- d) Double line to ground fault(LLG).

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

#### **Procedure:**

- 1. Open the MATLAB software
- 2. Open the M-file
- 3. Type the program in editor window
- 4. Save in current directory as "filename"
- 5. Compile and run the program

#### **STATEMENT:**

For the given power systems shown in fig, the neutral of each generator is grounded through a current limiting reactor of 0.25/3 p.u. on a 100 MVA base. The system data expressed in p.u. on a 100 MVA base is tabulated below. The generators are running on no load at their related voltage and rated frequency with their emfs in phase.

| Item            | Base MVA | Voltage Rating                                                                                                                                                                                                         | XI                                                                                                                                                                                                                                                                                                                                             | $X^2$                                                                                                                                                                                        | X0                                                                                                                                                                                                                             |
|-----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G <sub>1</sub>  | 100      | 20 kV                                                                                                                                                                                                                  | 0.15                                                                                                                                                                                                                                                                                                                                           | 0.15                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                           |
| $G_2$           | 100      | 20 kV                                                                                                                                                                                                                  | 0.15                                                                                                                                                                                                                                                                                                                                           | 0.15                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                           |
| $T_1$           | 100      | 20/220 kV                                                                                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                           |
| $T_2$           | 100      | 20/220 kV                                                                                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                           |
| $L_{12}$        | 100      | 220 kV                                                                                                                                                                                                                 | 0.125                                                                                                                                                                                                                                                                                                                                          | 0.125                                                                                                                                                                                        | 0.30                                                                                                                                                                                                                           |
| Lu              | 100      | 220 kV                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                           | 0.15                                                                                                                                                                                         | 0.35                                                                                                                                                                                                                           |
| L <sub>23</sub> | 100      | 220 kV                                                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                         | 0.7125                                                                                                                                                                                                                         |
|                 |          | $\begin{array}{ c c c c c } \hline Item & Base MVA \\\hline G_1 & 100 \\\hline G_2 & 100 \\\hline T_1 & 100 \\\hline T_2 & 100 \\\hline L_{12} & 100 \\\hline L_{13} & 100 \\\hline L_{23} & 100 \\\hline \end{array}$ | Item         Base MVA         Voltage Rating           G1         100         20 kV           G2         100         20 kV           T1         100         20/220 kV           T2         100         20/220 kV           L12         100         20/220 kV           L13         100         220 kV           L23         100         220 kV | ItemBase MVAVoltage Rating $X^1$ $G_1$ 10020 kV0.15 $G_2$ 10020 kV0.15 $T_1$ 10020/220 kV0.10 $T_2$ 10020/220 kV0.10 $L_{12}$ 10020/220 kV0.10 $L_{13}$ 100220 kV0.15 $L_{23}$ 100220 kV0.25 | ItemBase MVAVoltage Rating $X^1$ $X^2$ $G_1$ 10020 kV0.150.15 $G_2$ 10020 kV0.150.15 $T_1$ 10020/220 kV0.100.10 $T_2$ 10020/220 kV0.100.10 $L_{12}$ 10020/220 kV0.100.10 $L_{13}$ 100220 kV0.150.15 $L_{23}$ 100220 kV0.250.25 |

Determine the fault current for the following details of faults.

- a) A balanced 3-f fault at bus 3 through a fault impedance Zf = 0.1pu.
- b) A Single line to ground fault at bus 3 through a fault impedance Zf = 0.1pu.
- c) A line to line fault at bus 3, fault impedance Zf = 0.1pu.
- d) A double line to ground fault at bus 3 through a fault impedance Zf = 0.1pu

#### **Program:**

```
%program to find fault analysis%
clc;
clear all;
close all;
%positive sequence reactance data%
zdata1=[0 1 0 0.25
0 2 0 0.25
1 2 0 0.125
1 3 0 0.15
2 3 0 0.251;
%zero sequence impedence data%
zdata0=[0 1 0 0.4
0 2 0 0.1
1 2 0 0.3
1 3 0 0.35
2 3 0 0.7125];
%negative sequence reactance=positive reactance%
% zdata2=[0 1 0 0.25
8 0 2 0 0.25
8 1 2 0 0.125
8 1 3 0 0.15
% 2 3 0 0.25];
zdata2=zdata1;
zbus1=zbuild(zdata1);
zbus0=zbuild(zdata0);
zbus2=zbus1;
symfault(zdata1, zbus1);
lgfault(zdata0, zbus0, zdata1, zbus1, zdata2, zbus2)
llfault(zdata1, zbus1, zdata2, zbus2)
dlgfault(zdata0, zbus0, zdata1, zbus1, zdata2, zbus2)
```

#### **Outputs:**

a) Balanced three-phase fault(LLL/LLLG) Enter Faulted Bus No. -> 3 Enter Fault Impedance Zf = R + j\*X in complex form (for bolted faultenter 0). Zf = 0+j\*0.1

Balanced three-phase fault at bus No. 3 Total fault current = **3.1250 per unit** 

Bus Voltages during fault in per unit

| Bus | Voltage   | Angle   |
|-----|-----------|---------|
| No. | Magnitude | degrees |
| 1   | 0.5938    | 0.0000  |
| 2   | 0.6250    | 0.0000  |
| 3   | 0.3125    | 0.0000  |
|     |           |         |

Line currents for fault at bus No. 3

| From | То  | Current   | Angle    |
|------|-----|-----------|----------|
| Bus  | Bus | Magnitude | degrees  |
| G    | 1   | 1.6250    | -90.0000 |
| 1    | 3   | 1.8750    | -90.0000 |
| G    | 2   | 1.5000    | -90.0000 |
| 2    | 1   | 0.2500    | -90.0000 |
| 2    | 3   | 1.2500    | -90.0000 |
| 3    | F   | 3.1250    | -90.0000 |

#### b) Single line to-ground fault (LG)

Enter Faulted Bus No. -> 3 Enter Fault Impedance Zf = R + j\*X in complex form (for bolted fault enter 0). Zf = 0+j\*0.1Single line to-ground fault at bus No. 3 Total fault current = 2.7523 per unit Bus Voltages during the fault in per unit Bus -----Voltage Magnitude-----No. Phase-a Phase-b Phase-c 0.6330 1.0046 1.0046 1 2 0.7202 0.9757 0.9757 3 0.2752 1.0647 1.0647 Line currents for fault at bus No. 3 From To ----Line Current Magnitude----Bus Bus Phase a Phase b Phase c

| 1<br>2<br>2                     | 3<br>1<br>3                         | 1.6514<br>0.3761<br>1.1009                                 | 0.0000<br>0.1560<br>0.0000                                      | 0.0000<br>0.1560<br>0.0000                                 |        |         |
|---------------------------------|-------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|--------|---------|
| 3                               | E'                                  | 2.7523                                                     | 0.0000                                                          | 0.0000                                                     |        |         |
| c) Line-                        | to-line fa                          | ult analysis                                               | (LL)                                                            |                                                            |        |         |
| Enter                           | Faulte                              | d Bus No                                                   | > 3                                                             |                                                            |        |         |
| Enter                           | Fault                               | Impedance                                                  | eZf=R·                                                          | + j*X in                                                   |        |         |
| comple                          | ex form                             | (for bo                                                    | lted faul                                                       | t enter 0)                                                 | . Zf = | 0+j*0.1 |
| Line-t                          | co-line                             | fault at                                                   | t bus No.                                                       | 3                                                          |        |         |
| Total                           | fault                               | current =                                                  | = <b>3.2075</b> ]                                               | per unit                                                   |        |         |
| Bus Vo                          | oltages                             | during t                                                   | the fault                                                       | in per ur                                                  | nit    |         |
| Bus<br>No.<br>1<br>2<br>3       | Phase<br>1.0000<br>1.0000<br>1.0000 | oltage Ma<br>a Phase<br>0.6720<br>0.6939<br>0.5253         | agnitude-<br>b Phase<br>0 0.672<br>9 0.693<br>1 0.525           | с<br>0<br>9<br>1                                           |        |         |
| Line d                          | current                             | s for fau                                                  | ult at bu                                                       | s No. 3                                                    |        |         |
| From<br>Bus<br>1<br>2<br>2<br>3 | To<br>Bus<br>3<br>1<br>3<br>F       | Line Cu<br>Phase a<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | arrent Mac<br>a Phase b<br>1.9245<br>0.2566<br>1.2830<br>3.2075 | gnitude<br>Phase c<br>1.9245<br>0.2566<br>1.2830<br>3.2075 |        |         |
| d) Dout                         | ole line-to                         | -ground fau                                                | lt analysis(L                                                   | LG)                                                        |        |         |
| Enter                           | Faulte                              | d Bus No                                                   | > 3                                                             |                                                            |        |         |
| Enter                           | Fault                               | Impedance                                                  | eZf=R·                                                          | + j*X in                                                   |        |         |
| comple                          | ex form                             | (for bol                                                   | lted faul <sup>.</sup>                                          | t enter 0)                                                 | . Zf = | 0+j*0.1 |
| Double                          | e line-                             | to-ground                                                  | d fault a                                                       | t bus No.                                                  | 3      |         |
| Total                           | fault                               | current =                                                  | = <b>1.9737</b> ]                                               | per unit                                                   |        |         |
| Bus Vo                          | oltages                             | during t                                                   | the fault                                                       | in per ur                                                  | nit    |         |

Bus-----VoltageMagnitude-----No.Phase aPhase bPhase c11.00660.50880.508820.96380.57400.574031.08550.19740.1974

Line currents for fault at bus No. 3

| From | То  | Line Cur | rent Magn | itude   |
|------|-----|----------|-----------|---------|
| Bus  | Bus | Phase a  | Phase b   | Phase c |
| 1    | 3   | 0.0000   | 2.4350    | 2.4350  |
| 2    | 1   | 0.1118   | 0.3682    | 0.3682  |
| 2    | 3   | 0.0000   | 1.6233    | 1.6233  |
| 3    | F   | 0.0000   | 4.0583    | 4.0583  |

**Results:** 

١

# 5. SHORT CIRCUIT ANALYSIS OF POWER SYSTEM MODELS

**AIM:** Determination of short circuit analysis of power system models.

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

## **Procedure:**

- 1. Open the MATLAB software
- 2. Open the M-file
- 3. Type the program in editor window
- 4. Save in current directory as "filename"
- 5. Compile and run the program

## **PROGRAM:**

```
%Short circuit fault analysis
clc
clear all
disp('Short circuit fault analysis');
disp('STEP 1');
z1 = input('Enter the Z1 value:');
zbus1 = [z1]
disp('STEP 2');
z2 = input('Enter the z2 value: '); z3 = z1+z2;
zbus = [z1 z1;
           z1 z3]
disp('STEP 3');
z4 = input('Enter the z3 value:');
z5 = z3 + z4;
zbus = [z1 \ z1 \ z1;
        z1 z3 z3;
        z1 z3 z5]
disp('STEP 4');
z6 = input('Enter the z4 value: ');
z7 = z5 + z6;
zbus = [z1 z1 z1 z1;
       z1 z3 z3 z3;
      z1 z3 z5 z5;
      z1 z3 z5 z7]
n=4;
for i=1:4
for j=1:4
zbus(i,j) = zbus(i,j) - ((zbus(i,n)*zbus(n,j))/zbus(n,n));
end
end
```

```
disp('After Elimination:'); zbus(:,4)=[];zbus(4,:)=[]
disp('STEP 5');
z8 = input('Enter the next value: ');
z44 = z8 + zbus(1,1) + zbus(3,3) -
2 \times zbus(1,3); z41 = zbus(1,1) - zbus(1,3);
z42 = zbus(1, 2) - zbus(2, 3);
z43 = zbus(1,3) - zbus(3,3); z14 = z41; z24 = z42; z34 = z43;
zbus = [zbus(1,1) zbus(1,2) zbus(1,3) z14;
         zbus(2,1) zbus(2,2) zbus(2,3) z24;
         zbus(3,1) zbus(3,2) zbus(3,3) z34;
          z41
                      z42
                                 z43
                                         z44]
n=4;
for i=1:4
     for j=1:4
zbus(i,j) = zbus(i,j) - ((zbus(i,n)*zbus(n,j))/zbus(n,n));
end
end
zbus(:,4)=[];
disp('Final Result:');
zbus(4,:)=[]
v = input('Enter the voltage value: ');
disp('Fault at Bus 2');
disp('Fault current:');
 If = v/zbus(2,2)
disp('Post fault Bus voltages:');
vlf = v - (zbus(1, 2) * If)
v2f = v - (zbus (2, 2) * If)
v3f = v - (zbus (3, 2) * If)
disp('Line Flows:');
I13f = (v1f - v3f) / abs(z8)
disp('Fault at Bus 3');
disp('Fault Current:');
If = v/zbus(3,3)
disp('Post fault Voltages:');
vlf = v - (zbus(1, 3) * If)
v2f = v - (zbus (2, 3) * If)
v3f = v - (zbus (3, 3) * If)
disp('Line Flows:');
I13f = (v1f - v3f) / abs(z8)
```

```
OUTPUT:
Short circuit fault analysis
STEP 1
Enter the Z1 value: 1.5j
           zbus1 =
                   0 + 1.5000i
STEP 2
Enter the z2 value: 0.2j
zbus =
 0 + 1.5000i 0 + 1.5000i
 0 + 1.5000i
                   0 + 1.7000i
STEP 3
Enter the z3 value: 0.15j
zbus =
0 + 1.5000i 0 + 1.5000i 0 + 1.5000i
0 + 1.5000i
                 0 + 1.7000i 0 + 1.7000i
0 + 1.5000i
                 0 + 1.7000i 0 + 1.8500i
STEP 4
Enter the z4 value: 1.5j
zbus =
0 + 1.5000i
                                       0 + 1.5000i
           0 + 1.5000i
                          0 + 1.5000i
0 + 1.5000i
            0 + 1.7000i
                          0 + 1.7000i
                                       0 + 1.7000i
0 + 1.5000i
            0 + 1.7000i
                          0 + 1.8500i
                                   0 + 1.8500i
0 + 1.5000i
            0 + 1.7000i
                          0 + 1.8500i
                                     0 + 3.3500i
After Elimination:
zbus =
          0 + 0.8284i
                                 0 + 0.7388i
                                                         0 + 0.6716i
          0 + 0.7388i
                                 0 + 0.8373i
                                                         0 + 0.7612i
          0 + 0.6716i
                                 0 + 0.7612i
                                                         0 + 0.8284i
STEP 5
Enter the next value: 0.3j
                     0 + 0.7388i
   0 + 0.8284i
                                      0 + 0.6716i
                                                        0 + 0.1567i
   0 + 0.7388i
                    0 + 0.8373i
                                      0 + 0.7612i
                                                         0 - 0.0224i
   0 + 0.6716i
                    0 + 0.7612i
                                      0 + 0.8284i
                                                         0 - 0.1567i
   0 + 0.1567i
                     0 - 0.0224i
                                      0 - 0.1567i
                                                        0 + 0.6134i
Final Result:
```

zbus = 0 + 0.7883i 0 + 0.7445i 0 + 0.7117i 0 + 0.8365i 0 + 0.7555i 0 + 0.7555i 0 + 0.7883i 0 + 0.7445i 0 + 0.7117i Enter the voltage value: 1 Fault at Bus 2 Fault current: If =0 - 1.1955i Post fault Bus voltages: vlf = 0.1099v2f = 0v3f = 0.0969Line Flows: I13f = 0.0436Fault at Bus 3 Fault Current: If = 0 - 1.2685i Post fault Voltages: v1f = 0.0972 v2f = 0.0417 v3f = 0 Line Flows: I13f = 0.3241

## 6. SPEED CONTROL OF DC MOTOR

AIM: To construct three speed control dc motor using BJT-H bridge simulation using MATLAB.

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

#### **Procedure:**

1. Open Matlab-->Simulink--> File ---> New---> Model

- 2. Open Simulink Library and browse the components
- 3. Connect the components as per circuit diagram
- 4. Set the desired voltage and required frequency
- **5.** Simulate the circuit using MATLAB
- **6.** Plot the waveforms

#### **Circuit Diagram:**



**Output:** 



## 7. SPEED CONTROL OF INDUCTION MOTOR

AIM: Determination of speed control of induction motor.

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

#### **Procedure:**

1. Open Matlab-->Simulink--> File ---> New---> Model

2. Open Simulink Library and browse the components

- 3. Connect the components as per circuit diagram
- 4. Set the desired voltage and required frequency
- **5.** Simulate the circuit using MATLAB
- **6.** Plot the waveforms

#### **Circuit Diagram:**



**Outputs:** 



## 8. DESIGN AND ANALYSIS OF FEEDBACK CONTROL SYSTEM

AIM: Design and Analysis of unity feedback control system with forward path transfer function  $G(s) = \frac{1}{s^2 + 10s + 20}$ , the effect of addition of a PI controller on the system performance.

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

#### **Procedure:**

- 1. Open the MATLAB software
- 2. Open the M-file
- 3. Type the program in editor window
- 4. Save in current directory as "filename"
- 5. Compile and run the program

#### **Program:**

```
num=1;
den=[1 10 20];
g1=tf (num, den)
t1=feedback(q1,1)
step(t1, 'g')
hold on
num1=10;
den1=[1 10 20];
g2=tf (num1, den1)
t2=feedback(q2,1)
step(t2,'m')
hold on
Kp = 500;
Ki = 1
numc=[Kp Ki];
denc= [1 0]
```

```
numo=conv(numc,num)
deno=conv(den, denc)
g3=tf(numo,deno)
t3=feedback(g3,1)
step(t3, 'b')
hold on
Kp=500;
Ki = 100
numc=[Kp Ki];
denc= [1 0]
numo=conv(numc,num)
deno=conv(den, denc)
g3=tf(numo,deno)
t4=feedback(g3,1)
step(t4,'r')
hold on
Kp=500;
Ki = 500
numc=[Kp Ki];
denc= [1 0]
numo=conv(numc,num)
deno=conv(den, denc)
g3=tf(numo,deno)
t5=feedback(q3,1)
step(t5,'g')
hold on
```

## **Output:**



# 9. LOAD FREQUENCY CONTROL OF SINGLE AREA AND TWO AREA POWER SYSTEM

Aim: Design and analysis of load frequency control of single area and two area power system

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

#### **Procedure:**

1. Open Matlab-->Simulink--> File ---> New---> Model

- 2. Open Simulink Library and browse the components
- 3. Connect the components as per circuit diagram
- 4. Set the desired voltage and required frequency
- 5. Simulate the circuit using MATLAB
- **6.** Plot the waveforms

**Circuit Diagram:** 

#### I) LOAD FREQUENCY CONTROL OF SINGLE AREA SYSTEM:



**Output:** 



## II) LOAD FREQUENCY CONTROL OF TWO AREA SYSTEM:



## **Output:**



## **10.ECONOMIC DISPATCH OF THERMAL LOAD**

AIM: Determination of economic dispatch of thermal load.

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

#### **Procedure:**

- 1. Open the MATLAB software
- 2. Open the M-file
- 3. Type the program in editor window
- 4. Save in current directory as "filename"
- 5. Compile and run the program

#### **Program:**

clc;

clear all; % a b c fc max min data= [0.00142 7.20 510 1.1 600 150 0.00194 7.85 1 400 100 310 0.00482 7.97 200 050]; 78 1 ng=length(data(:,1)); a=data(:,1); b=data(:,2); c=data(:,3);fc=data(:,4); pmax=data(:,5); pmin=data(:,6); % loss=[0.00003 0.00009 0.00012]; loss=[000]; C=fc.\*c; B=fc.\*b; A=fc.\*a; la=1; pd=850; acc=0.2;

```
diff=1;
while acc <(abs(diff));
for i=1:ng;
p(i) = (la-B(i))/(2*(la*loss(i)+A(i)));
if p(i) <pmin(i);</pre>
p(i)=pmin(i);
end;
if p(i)>pmax(i);
p(i)=pmax(i);
end;
end;
LS=sum(((p.*p).*loss));
diff=(pd+LS-sum(p));
if diff>0
la=la+0.001;
else la=la-0.001;
end;
end;
Power Shared=p
Lambda=la
Loss=LS
Outputs:
a). When loss = [0.00003 \ 0.00009 \ 0.00012]
Power Shared = 435.1026 299.9085 130.6311
Lambda = 9.5290
Loss = 15.8222
b). When loss = 0
Power Shared = 393.0858 334.5361 122.1992
Lambda = 9.1490
Loss = 0
Result:
```

## **11.DESIGN OF SINGLE AND THREE PHASE INVERERS**

**AIM:** Determination of economic dispatch of thermal load.

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

#### **Procedure:**

- 1. Open the MATLAB software
- 2. Open the NEW MODEL IN SIMULINK
- 3. Design the circuit as shown in circuit diagram
- 4. Save the model and give appropriate values
- 5. Compile and run the model observe the output results in the scope

#### **Circuit diagram:**

#### Single phase inverter:



#### Three phase inverter:



**Outputs:** 

## **12.DESIGN OF SINGLE AND THREE PHASE FULL CONVERTERS**

**AIM:** Determination of economic dispatch of thermal load.

Software Required: MATLAB software, R2009a

Windows XP operating system.

Apparatus Required: Personal Computer (PC).

#### **Procedure:**

- 1. Open the MATLAB software
- 2. Open the NEW MODEL IN SIMULINK
- 3. Design the circuit as shown in circuit diagram
- 4. Save the model and give appropriate values
- 5. Compile and run the model observe the output results in the scope

#### Circuit diagram:





## **Outputs:**



#### Three phase full converter:



## **Outputs:**

